

Eficiencia Energética en el Transporte

"Acercando la Electromovilidad a Gestores Energéticos del Sector Público"

Unidad Transporte Eficiente y Estándares transporte_eficiente@minenergia.cl

Septiembre 2025

- ☐ Eficiencia energética en el transporte.
- ☐ Electromovilidad y Tecnología Asociada.
- ☐ Recambio tecnológico.

Elección del vehículo correcto

Cada kilógramo cuenta. Mientras más pese la carga total del vehículo, mayor será el consumo. Hay que seleccionar el vehículo y la carrocería apropiados para transportar el tipo de carga especifica, y que, a la vez, se ajuste a las necesidades diarias de la ruta.

Rendimiento del vehículo: www.consumovehicular.cl

Mantenimiento

El mantenimiento ahorra combustible, aumenta la vida útil y disminuye el riesgo de inconvenientes durante la operación.

Por ejemplo, según el Instituto para la Diversificación y Ahorro de la Energía de España (IDAE), el cuidado de los filtros de aceite, aire y combustible puede generar un nivel de ahorro entre el 0,5% y 1,5%.

Neumáticos

Cuando el neumático tiene menos aire que el necesario (menor presión), se genera calor de forma excesiva y aumenta la llamada resistencia al rodamiento. Se estima que puede incrementar el consumo entre un 1 y un 2%.

Conducción eficiente

Conducir en cambios adecuados y mantener el motor en torno a las 1.500 rpm. Punto optimo, ver manual del camión.

Evitar las aceleraciones bruscas. Si no se hacen el rendimiento puede aumentar en un 20%.

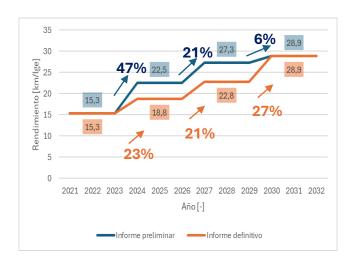
Mantener la inercia del vehículo- manaja a la defenciva.

Reducción de ralentí

El ralentí en camiones consume hasta 4 litros de combustible por hora, lo que se traduce en un alto costo energético y en la generación de diversos contaminantes. Se recomienda limitar el uso del ralentí (detener el vehículo), para lo cual existen diversas estrategias y tecnologías.

Vehículos más eficientes

Estándares de eficiencia energética, el promedio de rendimiento de los vehículos deberá ser sobre 18,8 km/l al 2026. Primer estándar de EE de vehícular liviana en la oferta.


Cambio de los motores de combustión a motores eléctricos por su mayor rendimiento.

Cambio a energéticos más económicos.

Por ejemplo:

Bus Eléctrico 65 % más barato por km.

Electromovilidad - Mantenimiento

¿Por qué electromovilidad?

Vehículo más eficiente → ahorros.

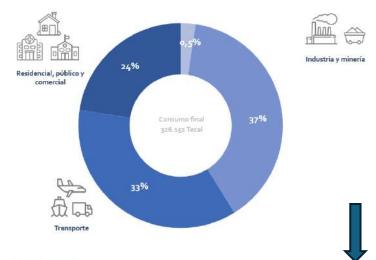
Menos piezas para mantener → menos costos de mantenimiento.

A la economía nacional le convine \rightarrow Minería y ayuda a la independencia del combustible importado.

¿Por qué no electromovilidad?

Vehículos más caros.

Tecnología no tan conocida.


Poco respaldo, sin talleres.

Poca autonomía.

Hay que cargarlos- (demoras y faltan de cargadores)

Instructivo de la DIPRES

OFTCTO CTRCIII A

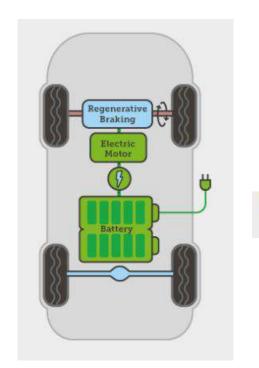
ANT.: Ley Nº 21.722 de Presupuestos del Sector Público para el año 2025.

MAT.: Instrucciones específicas sobre las materias que se indican.

SANTIAGO,

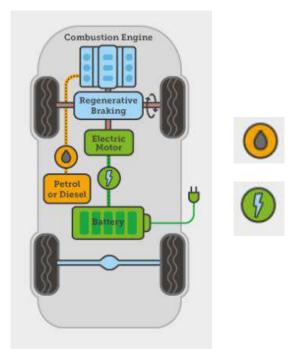
DE : MINISTRO DE HACIENDA

A : MINISTROS (AS), SUBSECRETARIOS (AS) Y JEFES (AS)
DE SERVICIOS E INSTITUCIONES DEL SECTOR PÚBLICO

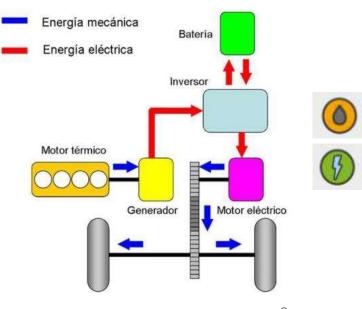

15. Sobre la adquisición y utilización de vehículos motorizados

Se someterá a autorización previa del Ministerio de Hacienda, a través de la Dirección de Presupuestos, la adquisición a cualquier título, de toda clase de vehículos motorizados destinados al transporte terrestre de pasajeros y/o de carga, cuando el precio supere los montos que a continuación se señalan:

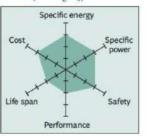
- a) Destinados a Ministros de Estado, cuyo valor unitario exceda el equivalente en moneda nacional de 550 unidades Tributarias Mensuales.
- Destinados a Subsecretarios, cuyo valor unitario exceda el equivalente en moneda nacional de 450 Unidades Tributarias Mensuales.
- Destinados a Jefes de Servicios, cuyo valor unitario exceda el equivalente en moneda nacional de 350 Unidades Tributarias Mensuales.
- d) Otros vehículos de transportes de carga y/o pasajeros, cuyo valor unitario exceda el equivalente en moneda nacional de 400 Unidades Tributarias Mensuales.


VEHÍCULOS ELÉCTRICOS

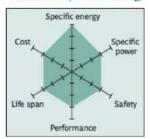
- ✓ Vehículo eléctrico a batería
- Almacena electricidad en sus baterías, cargándose a través de la red eléctrica.



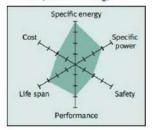
- ✓ Vehículo híbrido enchufable
- Almacena electricidad desde la red y tiene estanque de combustible.
- Funciona con un motor a combustión interna o Motor eléctrico.

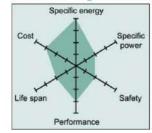


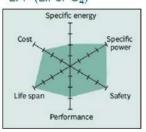
- ✓ Vehículo híbrido rango extendido
- Almacena electricidad desde la red y tiene estanque de combustible.
- Funciona con el Motor eléctrico.
- Generador eléctrico, usa el combustible para cagar la batería.



VEHÍCULOS ELÉCTRICOS


LMO (LiMn₂O₄)


NMC-INR (LiNiMnCoO₂)


NCA (LINICOAIO2)

LCO (LiCoO₂)

LFP (LiFePO₄)

1. Formato Cilíndrico

Ejemplo: 18650, 21700, 14500

•18650: 18 mm diámetro × 65 mm largo (muy común en movilidad y electrónica).

•21700: 21 mm × 70 mm (más capacidad que 18650, usado por Tesla).

•14500: similar a una pila AA, pero recargable de litio.

🖈 Ventajas: Buena disipación térmica, fácil de ensamblar en módulos.

2. Formato Prismático

Ejemplo: celdas rectangulares usadas en autos como BMW, Ford, etc.

Tienen forma de caja metálica.

Mayor densidad energética por volumen.

Se ensamblan fácilmente en paquetes compactos.

🖈 Ventajas: Aprovechamiento del espacio, buena rigidez estructura 🌑



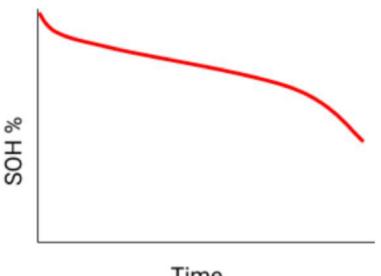
3. Formato Pouch (bolsa flexible)

Ejemplo: usado en celulares, laptops, algunos EVs.

- •Celdas en envoltura flexible tipo bolsa.
- Muy livianas y delgadas.
- •Sensibles a la hinchazón y daño mecánico.
- ★ Ventajas: Alta densidad energética, peso reducido

Baterías - Conceptos

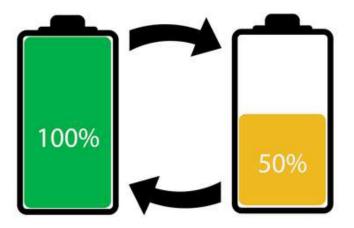
24 HORAS



Baterías de autos eléctricos: los mitos y verdades

"Las baterías de vehículos eléctricos duran tan solo unos años": Falso

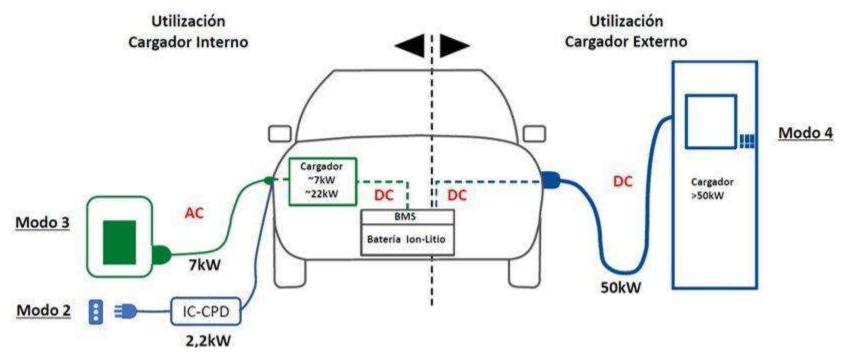
Las baterías tienen una durabilidad que en muchas ocasiones es mayor a la vida misma del auto. Los recientes estudios mundiales muestran que las baterías van teniendo una degradación de alrededor de 1,8% anual. En términos sencillos, al cabo de 10 años la batería aún tendrá un 82% de su capacidad, sin afectar en nada el funcionamiento del auto, y solamente entregando una menor autonomía con respecto a sus inicios. Sumado a esto, marcas como BYD, por ejemplo, tienen garantía hasta los 8 años o 150 mil kilómetros y sus baterías pueden alcanzar hasta 5.000 ciclos de carga de 0 a 100%, lo que se traduce en realizar cargas completas de la batería todos los días durante 14 años o recorrer 2.000.000 de kilometros.



Time

N° ciclos x autonomía = kilometraje $5.000 \times 400 = 2.000.000 \text{ km o casi } 14 \text{ años } (a 15.000 \text{km})$

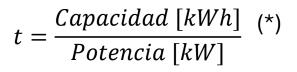
N° de ciclos de carga


Depende de los ciclos de carga

10 años de antigüedad promedio, en Chile

VEHÍCULO ELÉCTRICO

- ✓ No tiene estanque, tiene batería.
- ✓ Usa motor eléctrico, no de combustión.
- ✓ Hay que enchufarlo a la red eléctrica.


- ✓ Motor eléctrico
- ✓ Inversores
- ✓ Sistema de acoplador de carga
- ✓ Cargador
- ✓ Batería

Batería de 50 kWh Autonomía de 300 km aprox.

CARGADORES Y ACCESORIOS

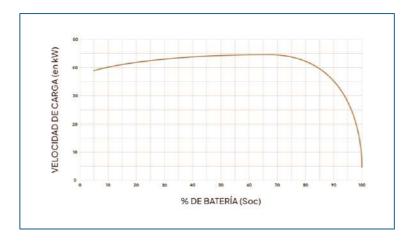
Para una batería de 50 kWh

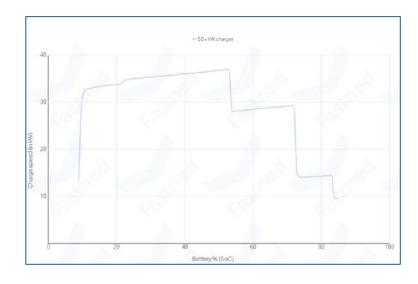
2 kW 25 horas

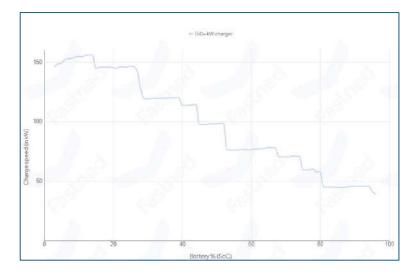
7 kW 7 horas

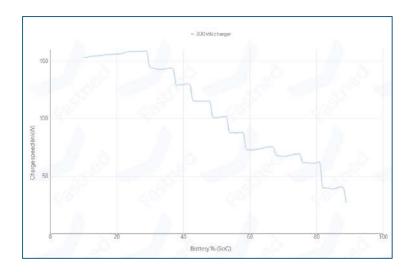
Potencia: Tiempo de carga: (aproximado)

Batería de 50 kWh Autonomía de 300 km aprox.



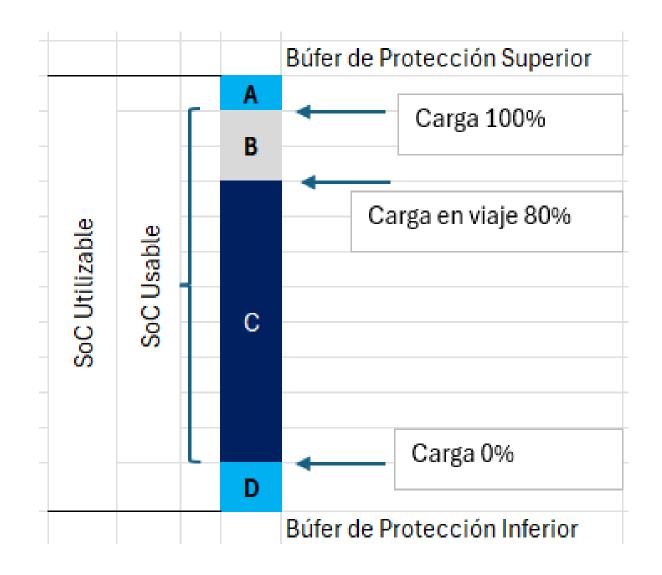

CARGADORES Y VELOCIDAD DE CARGA

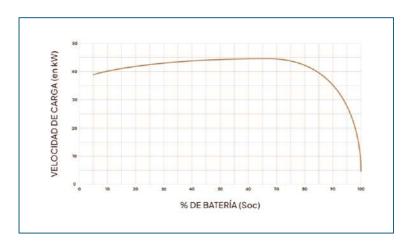

$$t = \frac{Capacidad [kWh]}{Potencia [kW]}$$



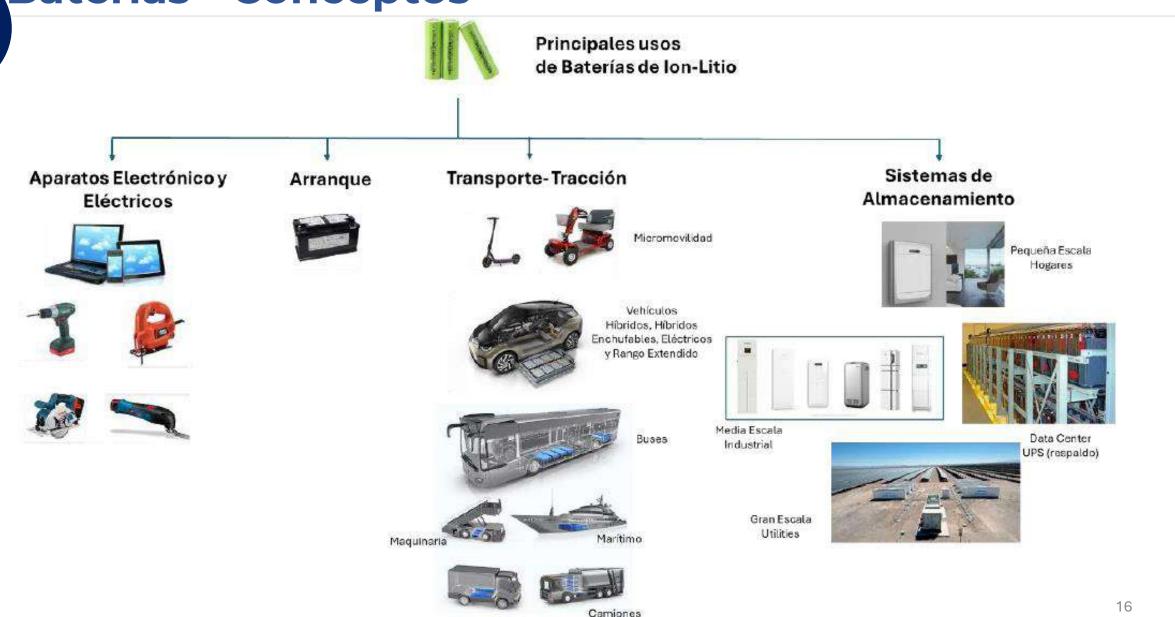
Comprueba la velocidad de carga y la compatibilidad | Fastned

Carga en DC, más menos potencia constante entre 20%-80% SoC (State of Charge)




JAC IEV7S

BMW iX30


Volvo Ex30

Baterías - Conceptos

Baterías - Conceptos

Conectores - Conceptos

- La industria no se ha puesto de acuerdo en cómo transmitir la energía e información entre el cargador y el VE.
- RIC -15 permite todas. Aunque fomenta en DC el conector CCS-tipo 2 y en AC el conector tipo 2

APP- CARGA - Conceptos

La aplicación Eco carga funciona en celulares, donde los usuarios de vehículos eléctricos puedan conocer y revisar geográficamente los cargadores disponibles para la carga pública, con los tipos de conectores, la potencia de carga y otras informaciones de interés, como horarios disponibles y precios del servicio, entre otros.

Ahorros de energía, de pesos y de emisiones (CASO SAG-30.000 km -año).

1. Vehículo

Hyundai Elantra MD FL 1,6 L. DOHC Sedan 4P

2. Rendimiento

Inicio | Consumo Vehicular

3. Inversión \$19.990.000

1. Vehículo

Chevrolet-Bolt EUV

2. Rendimiento

		Modelo: Bolt	EV			
Código Informe Técnico	:	CH8094EL0820S00- K	Marca	:	Chevrolet	
Tracción : 4x		4x2	4x2 Propulsión		Eléctrico Puro	
Transmisión	: A		Carroceria	:	Hatchback	
Cilindrada			Fecha certificación	:	09/09/2020	
Categoría		LPE	Norma	:	No Aplica	
Rendimiento eléctrico	:	6 [km/kWh]	CO2	:	0 [grs/km]	

Inicio | Consumo Vehicular

3. Inversión **\$ 29.664.530**

1. Vehículo

Omoda E5

2. Rendimiento

		Modelo: Omoda	E5 BEV			
Código Informe Técnico	:	OM9409EL0124S00- 4	Marca	:	Omoda	
Tracción	:	4x2	Propulsión	:	Eléctrico Puro	
Transmisión : A		Α	Carrocería	:	Station Wagon	
Cilindrada	:	0	Fecha certificación	:	20/02/2024	
Categoría	:	LPE	Norma	:	No Aplica	
Rendimiento : 7.7 [km/kWh]		CO2		0 [grs/km]		

Inicio | Consumo Vehicular

3. Inversión

\$ 29.176.000

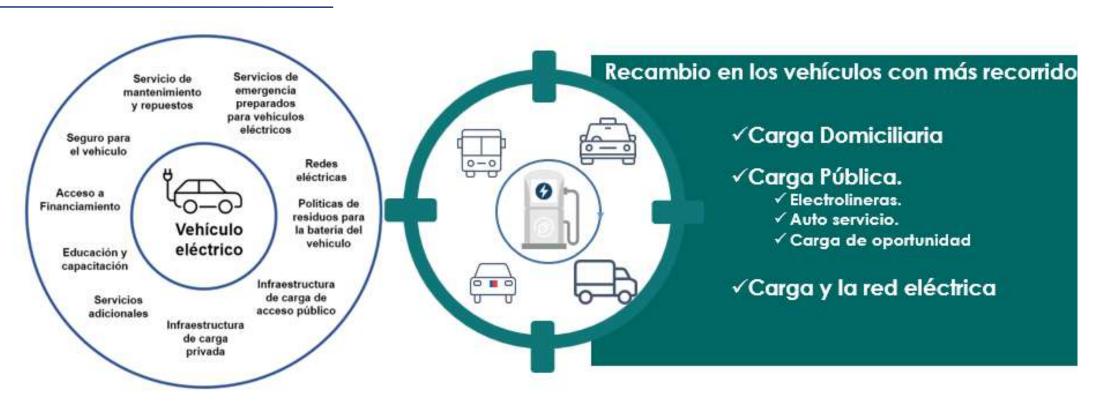
\$30.990.000

OMODA E5 2026 | Promociones Precios y Bonos

Biobío - Taxis Eléctricos

Ahorros de energía, de pesos y de emisiones

- > Comparación operación.
 - □ Rendimiento de VCI: rendimiento de 10 km/l → en 100 km
 - Consumo de combustible en litros = $\frac{distancia}{rendimiento} = \frac{100 \text{ km}}{14,2 \text{ km/l}} = 7 \text{ litros}$
 - Precio promedio bencina 95 octanos, es de 1.290 \$/l* por 7 litros

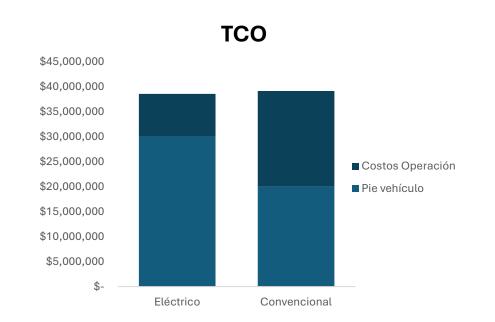

- □ Rendimiento del VE Eléctrico: 6 km/kWh → en 100 km
 - Consumo de energía en kWh= $\frac{distancia}{rendimiento} = \frac{100 \text{ km}}{6 \text{ km/kWh}} = 16,7 \text{ kWh}$ aproximadamente.
 - Precio energía eléctrica ~ 221 \$/kWh(***)→ Energía eléctrica 16,7 kWh

En 100 km
$$\rightarrow$$
 \$3.683 \rightarrow 36,8 \$/km

MIGRARO NO A LA MOVILIDAD ELÉCTRICA

- ✓ ¿Puedo hacer el recorrido con un vehículo eléctrico?
- ✓ ¿Qué vehículo eléctrico?, ¿capacidad de la batería, rendimientos, potencias máximas de carga en AC y DC, venden la batería de repuesto?
- ✓ ¿Cómo haré las cargas de la batería?, ¿Cuál me conviene? (estacionamiento, tarifas, carga en rutas)
- ✓ ¿Me es conveniente migrar a la movilidad eléctrica? (\$; CO2, Imagen, DIPRES)
- ✓ ¿Hay servicio técnico en mi ciudad?
- √ ¿Hay sistemas de carga en rutas?

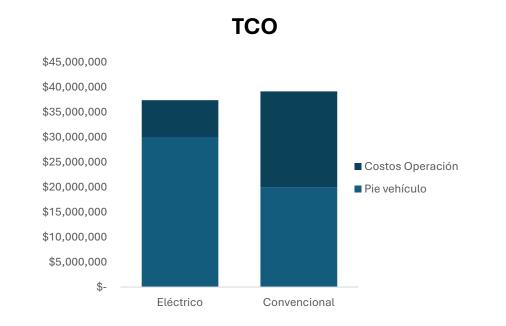
ESTRATEGIA NACIONAL DE ELECTROMOVILIDAD



¿Conviene?

- Al año 30.000 km
- Evaluación a 6 años.

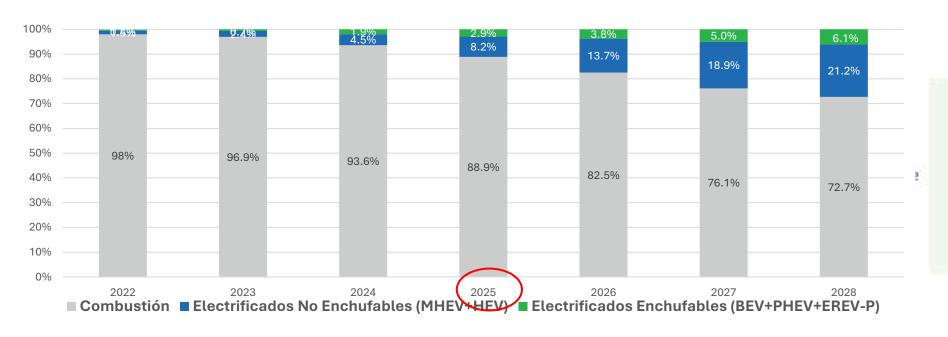
Hyundai Elantra	Chevrolet Volt
Precio: 20 millones	Precio: 30 millones
Rendimiento: 14,2 km/l	Rendimiento: 6 km/kWh
Precio diésel (RM): \$1.290	Precio kWh (Enel-BT1): \$221
Mantenimiento anual: 1 millón	Mantenimiento anual: 0,5 millones


TCO del VE es más económico por \$ 583.000.

¿Conviene?

- Al año 30.000 km
- Evaluación a 6 años.

Hyundai Elantra	OMODA
Precio: 20 millones	Precio: 30 millones
Rendimiento: 14,2 km/l	Rendimiento: 7,7 km/kWh
Precio diésel (RM): \$1.290	Precio kWh (Enel-BT-1): \$221
Mantenimiento anual: 1 millón	Mantenimiento anual: 0,5 millones



TCO del VE es más económico por \$ 1.746.000

Parque y Proyección de mercado

	2022	2023	2024	2025p	2026p	2027p	2028p
HÍBRIDO HEV	2.552	4.042	6.940	10.271	16.434	23.007	27.609
ELECTRICIDAD EV	1.295	1.588	4.507	5.769	7.096	9.225	11.069
HIBRIDO ENCHUFABLE PHEV	474	506	1.147	3.212	4.946	6.924	9.001
MILD HYBRID MHEV	2.583	3.197	6.940	15.268	27.482	38.475	42.323
Total 0 Baja emisión	6.904	9.333	19.534	34.520	55.958	77.632	90.003
Part. Mercado LyV	1,6%	3,0%	6,5%	11,1%	17,5%	23,9%	27,3%
TOTAL EV y PHEV	1.769	2.094	5.654	8.98 <u>1</u>	12.042	16.149	20.071
Part. Mercado LyV	0,4%	0,7%	1,9%	2,9%	3,8%	5,0%	6,1%

10,6 %

% Participación Nuevas Energías en Mercado Livianos y Medianos